Effect of Natural Sunlight on Bacterial Activity and Differential Sensitivity of Natural Bacterioplankton Groups in Northwestern Mediterranean Coastal Waters

Abstract

ABSTRACT We studied the effects of natural sunlight on heterotrophic marine bacterioplankton in short-term experiments. We used a single-cell level approach involving flow cytometry combined with physiological probes and microautoradiography to determine sunlight effects on the activity and integrity of the cells. After 4 h of sunlight exposure, most bacterial cells maintained membrane integrity and viability as assessed by the simultaneous staining with propidium iodide and SYBR green I. In contrast, a significant inhibition of heterotrophic bacterial activity was detected, measured by 5-cyano-2,3 ditolyl tetrazolium chloride reduction and leucine incorporation. We applied microautoradiography combined with catalyzed reporter deposition-fluorescence in situ hybridization to test the sensitivity of the different bacterial groups naturally occurring in the Northwestern Mediterranean to sunlight. Members of the Gammaproteobacteria and Bacteroidetes groups appeared to be highly resistant to solar radiation, with small changes in activity after exposure. On the contrary, Alphaproteobacteria bacteria were more sensitive to radiation as measured by the cell-specific incorporation of labeled amino acids, leucine, and ATP. Within Alphaproteobacteria , bacteria belonging to the Roseobacter group showed higher resistance than members of the SAR11 cluster. The activity of Roseobacter was stimulated by exposure to photosynthetic available radiation compared to the dark treatment. Our results suggest that UV radiation can significantly affect the in situ single-cell activity of bacterioplankton and that naturally dominating phylogenetic bacterial groups have different sensitivity to natural levels of incident solar radiation.

Josep M. Gasol
Josep M. Gasol
Staff scientist