Abstract Pico‐ and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures. We used environmental DNA metabarcoding across a 6‐year time series to explore the structure and seasonality of pico‐ and nanoplankton communities in two sites of the Bay of Biscay, one coastal and one offshore, and construct association networks to reveal potential keystone and connector taxa. Temporal trends in alpha diversity were similar between the two sites, and concurrent communities more similar than within the same site at different times. However, we found differences between the network topologies of the two sites, with both shared and site‐specific keystones and connectors. For example, Micromonas , with lower abundance in the offshore site is a keystone here, indicating a stronger effect of associations such as resource competition. This study provides an example of how time series and association network analysis can reveal how similar communities may function differently despite being geographically close.