Abstract Aerobic anoxygenic phototrophic (AAP) bacteria are a common part of microbial communities in the sunlit ocean. They contain bacteriochlorophyll a (BChl a )‐based photosystems that harvest solar energy for their metabolism. Across different oceanic regions, AAP bacteria seem to be more abundant in eutrophic areas, associated with high chlorophyll concentrations. While most previous studies focused on surface samplings, there is limited information regarding their vertical distribution in euphotic zones of the major ocean basins. Here, we hypothesized that AAP bacteria will follow a similar structure to the chlorophyll depth profile across areas with different degrees of stratification. To test this hypothesis, we enumerated AAP cells and determined bulk water BChl a concentrations along the photic zone of a latitudinal transect in the South and Central Atlantic Ocean. Overall, the distribution of AAP bacteria was highly correlated to that of chlorophyll a and to the abundance of picophytoplankton across both vertical and horizontal gradients. Furthermore, estimated light energy captured across the water column showed that, while AAP bacteria share a common latitudinal pattern of light absorption with picophytoplankton, they display a unique vertical arrangement with highest photoheterotrophic activity in the top 50 m of the surface ocean.