Abstract Environmental molecular sequencing has revealed an abundance of microorganisms that were previously unknown, mainly because most had not been cultured in the laboratory. Within this novel diversity, there are the uncultured MAST clades (MArine STramenopiles), which are major components of marine heterotrophic flagellates (HFs) thought to be active bacterial grazers. In this study, we investigated the gene expression of natural HFs in a mixed community where bacterivory was promoted. Using fluorescence in situ hybridization and 18S rDNA derived from metatranscriptomics, we followed the taxonomic dynamics during the incubation, and confirmed the increase in relative abundance of different MAST lineages. We then used single cell genomes of several MAST species to gain an insight into their most expressed genes, with a particular focus on genes related to phagocytosis. The genomes of MAST-4A and MAST-4B were the most represented in the metatranscriptomes, and we identified highly expressed genes of these two species involved in motility and cytoskeleton remodeling, as well as many lysosomal enzymes. Particularly relevant were the cathepsins, which are characteristic digestive enzymes of the phagolysosome and the rhodopsins, perhaps used for vacuole acidification. The combination of single cell genomics and metatranscriptomics gives insights on the phagocytic capacity of uncultured and ecologically relevant HF species.