Global distribution, diversity, and ecological niche of Picozoa, a widespread and enigmatic marine protist lineage

Abstract

Background The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial plank- tonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species distribution modeling, and ecological niche characterization. Results Picozoa was among the ten most abundant eukaryotic groups, found almost exclusively in marine environ- ments. The phylum was represented by 179 Picozoa’s OTU (pOTUs) placed in five phylogenetic clades. Picozoa com- munity structure had a clear latitudinal pattern, with polar assemblages tending to cluster separately from non-polar ones. Based on the abundance and occupancy pattern, the pOTUs were classified into four categories: Low-abundant, Widespread, Polar, and Non-polar. We calculated the ecological niche of each of these categories. Notably, pOTUs sharing similar ecological niches were not closely related species, indicating a phylogenetic overdispersion in Picozoa communities. This could be attributed to competitive exclusion and the strong influence of the seasonal amplitude of variations in environmental factors, such as temperature, shaping physiological and ecological traits. Conclusions Overall, this work advances our understanding of uncharted protists’ evolutionary dynamics and eco- logical strategies. Our results highlight the importance of understanding the species-level ecology of marine het- eroflagellates like Picozoa. The observed phylogenetic overdispersion challenges the concept of phylogenetic niche conservatism in protist communities, suggesting that closely related species do not necessarily share similar ecologi- cal niches.

Ramon Massana
Ramon Massana
Staff scientist

I am microbial ecologists with a deep interest in protist ecology and evolution

Ramiro Logares
Ramiro Logares
Staff scientist